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σ-derivations on generalized matrix algebras

Aisha Jabeen, Mohammad Ashraf and Musheer Ahmad

Abstract

Let R be a commutative ring with unity, A,B be R-algebras, M

be (A,B)-bimodule and N be (B,A)-bimodule. The R-algebra G =
G(A,M,N,B) is a generalized matrix algebra defined by the Morita
context (A,B,M,N, ξMN,ΩNM). In this article, we study Jordan σ-
derivations on generalized matrix algebras.

1 Introduction

Let R be a commutative ring with unity and A be an R-algebra and Z(A)
be the center of A. A map d : A → A is called a derivation on A if d(ab) =
d(a)b + ad(b) holds for all a, b ∈ A. Suppose that σ is an automorphism on
A. A map d : A → A is called σ-derivation on A if d(ab) = d(a)b + σ(a)d(b)
holds for all a, b ∈ A. A map d : A → A is called σ-anti-derivation on A if
d(ab) = d(b)a+ σ(b)d(a) holds for all a, b ∈ A.

A Morita context consists of two unital R-algebras A and B, two bimod-
ules (A,B)-bimodule M and (B,A)-bimodule N, and two bimodule homomor-
phisms called the bilinear pairings ξMN : M⊗

B
N −→ A and ΩNM : N⊗

A
M −→ B
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satisfying the following commutative diagrams:

M⊗
B
N ⊗

A
M

ξMN⊗IM //

IM⊗ΩNM

��

A⊗
A
M

∼=

��
M⊗

B
B

∼= // M

and N ⊗
A
M⊗

B
N

ΩNM⊗IN //

IN⊗ξMN

��

B⊗
B
N

∼=

��
N ⊗

A
A

∼= // N .

Let us write this Morita context as (A,B,M,N, ξMN,ΩNM). We refer the
reader to [13] for the basic properties of Morita context. If (A,B,M,N,
ξMN,ΩNM) is a Morita context, then the set[

A M

N B

]
=

{[
a m
n b

]
a ∈ A,m ∈M, n ∈ N, b ∈ B

}
forms an R-algebra under matrix addition and matrix-like multiplication,
where at least one of the two bimodules M and N is distinct from zero. Such
an R-algebra is usually called a generalized matrix algebra of order 2 and is

denoted by G = G(A,M,N,B) =

[
A M

N B

]
. This kind of algebra was first

introduced by Morita in [13], where the author investigated Morita duality
theory of modules and its applications to Artinian algebras. All associative
algebras with nontrivial idempotents are isomorphic to generalized matrix al-
gebras. Most common examples of generalized matrix algebras are full matrix
algebras over a unital algebra and triangular algebras [14, 15]. Also, if the
bilinear pairings ξMN and ΩNM are zero, then G is called a trivial generalized
matrix algebra and if N = 0, then G is called a triangular algebra.

The center of G is

Z(G) =

{[
a 0
0 b

]
am = mb, na = bn for all m ∈M, n ∈ N

}
.

Indeed Z(G) is a set diagonal matrices

[
a 0
0 b

]
, where a ∈ Z(A), b ∈ Z(B)

and am = mb, na = bn for all m ∈ M, n ∈ N. Also, in our case M is faithful
left A-module and right B-module, then the condition a ∈ Z(A), b ∈ Z(B) is
superfluous and can be removed. Define two natural projections πA : G → A

and πB : G → B by πA

[
a m
n b

]
= a and πB

[
a m
n b

]
= b. Moreover,

πA(Z(G)) ⊆ Z(A) and πB(Z(G)) ⊆ Z(B) and there exists a unique algebraic
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isomorphism ξ : πA(Z(G))→ πB(Z(G)) such that am = mξ(a) and na = ξ(a)n
for all a ∈ πA(Z(A)),m ∈M and n ∈ N.

Let 1A (resp.1B) be the identity of the algebra A (resp.B) and let I be

the identity of generalized matrix algebra G, e =

[
1A 0
0 0

]
, f = I − e =[

0 0
0 1B

]
and G11 = eGe, G12 = eGf , G21 = fGe, G22 = fGf . Thus

G = eGe+ eGf +fGe+fGf = G11 +G12 +G21 +G22 where G11 is subalgebra of
G isomorphic to A, G22 is subalgebra of G isomorphic to B, G12 is (G11,G22)-
bimodule isomorphic to M and G21 is (G22,G11)-bimodule isomorphic to N.
Also, πA(Z(G)) and πB(Z(G)) are isomorphic to eZ(G)e and fZ(G)f respec-
tively. Then there is an algebra isomorphisms ξ : eZ(G)e→ fZ(G)f such that
am = mξ(a) and na = ξ(a)n for all m ∈ eGf and n ∈ fGe.

There has been a great deal of work concerning characterizations of σ-
derivations on rings. In the year 1957, Herstein [5] studied Jordan derivation
on prime ring and proved that every Jordan derivation from a prime ring of
characteristic not 2 into itself is a derivation. Brešar [2] proved that every
Jordan derivation on a 2-torsion free semiprime ring is a derivation. Han
and Wei [4] studied the Jordan (σ, τ)-derivation on triangular algebras T and
proved that d is a Jordan (σ, τ)-derivation on T if and only if d is a (σ, τ)-
derivation on T. Several authors studied various kind of derivation on general-
ized matrix algebras [8,9,15]. Recently, Li and Wei [8] obtained the structure
of derivation on generalized matrix algebra and Li, Wyk and Wei [9] proved
that every Jordan derivation can be expressed as the sum of a derivation and
an antiderivation on generalized matrix algebras.

Motivated by these studies our main purpose is to find out the structure
of σ-derivation and Jordan σ- derivation on generalized matrix algebra. Also
we show that every Jordan σ-derivation can be expressed as the sum of a
σ-derivation and an anti skew-derivation on generalized matrix algebras.

2 Main Results

First of all we should mention some important results as follows:

Lemma 2.1. [1, Propostion 2.1] Let (γ, δ, µ, ν,m0, n0) be a 6-tuple such that
γ : R → R and δ : S → S are endomorphisms µ : M → M is γ − δ−bimodule,
ν : N → N is a δ − γ−bimodule automorphisms and m0 ∈ M & n0 ∈ N are
fixed elements such that following conditions are satisfied:

(i) [m0,N] = 0 and (N,m0) = 0,

(ii) [M, n0] = 0 and (n0,M) = 0,
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(iii) [µ(m), ν(n)] = γ[m.n] and (ν(n), µ(m)) = δ(n,m).

Then the map σ : G→ G defined by

σ

[
a m
n b

]
=

[
γ(a) γ(a)m0 −m0δ(b) + µ(m)

n0γ(a)− δ(b)n0 + ν(n) δ(b)

]
is a ring automorphism.

Now before the study of our main results, it is necessary to establish some
substantial results as follows:

Proposition 2.1. Let G = G(A,M,N,B) be a generalized matrix algebra over
a commutative ring R with A and B have only trivial idempotents. An additive
map Φd : G → G is a σ-derivation on G if and only if Φd has the following
form

Φd

([
a m
n b

])
=

[
p1(a) − µ(m)n′

0 + p3(n) −m0δ(b)n
′
0 γ(a)m′

0 + r2(m) −m′
0b

n′
0a+ s3(n) − δ(b)n′

0 n0γ(a)m′
0 + q2(m) + ν(n)m′

0 + q4(b)

]
,

(♠)
where a ∈ A; b ∈ B;m,m0,m0

′ ∈ M;n, n0, n0
′ ∈ N and p1 : A→ A, r2 : M→

M, s3 : N → N, q4 : B→ B, p3 : N → A, r4 : B→ M, s1 : A→ N, q2 : M→ B

are R-linear maps satisfying the following conditions:

1. p1(a1a2) = p1(a1)a2+γ(a1)p1(a2)+γ(a1)m0s1(a2) and p1(mn) = r2(m)n+
µ(m)s3(n);

2. q4(b1b2) = q4(b1)b2 +δ(b1)q4(b2)−δ(b1)n0r4(b2) and q4(nm) = s3(n)m+
ν(n)r2(m);

3. r2(am) = p1(a)m + γ(a)r2(m) + γ(a)m0q2(m) and r2(mb) = r2(m)b +
µ(m)q4(b);

4. s3(na) = s3(n)a+ν(n)p1(a) and s3(bn) = q4(b)n−δ(b)n0p3(n)+δ(b)s3(n);

5. p3(n) = −m′0n−m0s3(n) and q2(m) = n′0m+ n0r2(m).

Proof. Assume that σ-derivation takes the following form as

Φd

[
a m
n b

]
=

[
p1(a) + p2(m) + p3(n) + p4(b) r1(a) + r2(m) + r3(n) + r4(b)
s1(a) + s2(m) + s3(n) + s4(b) q1(a) + q2(m) + q3(n) + q4(b)

]
where p1 : A → A, p2 : M → A, p3 : N → A, p4 : B → A; r1 : A → M, r2 :
M → M, r3 : N → M, r4 : B → M; s1 : A → N, s2 : M → N, s3 : N →
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N, s4 : B → N and q1 : A → B,q2 : M → B, q3 : N → B, q4 : B → B are
R-linear maps. As Φd is the σ-derivation with automorphism σ defined by
Φd(G1G2) = Φd(G1)G2 + σ(G1)Φd(G2) for all G1, G2 ∈ G. Now we assume

that G1 =

[
a 0
0 0

]
and G2 =

[
0 m
0 0

]
and applying Lemma 2.1

Φd

([
0 am
0 0

])
= Φd

([
a 0
0 0

])[
0 m
0 0

]
+ σ

([
a 0
0 0

])
Φd

([
0 m
0 0

])
[
p2(am) r2(am)
s2(am) q2(am)

]
=

[
p1(a) r1(a)
s1(a) q1(a)

] [
0 m
0 0

]
+

[
γ(a) γ(a)m0

n0γ(a) 0

] [
p2(m) r2(m)
s2(m) q2(m)

]
=

[
0 p1(a)m
0 s1(a)m

]
+

[
γ(a)p2(m) + γ(a)m0s2(m) γ(a)r2(m) + γ(a)m0q2(m)

n0γ(a)p2(m) n0γ(a)r2(m)

]
.

On comparing both sides, we get

p2(am) = γ(a)p2(m) + γ(a)m0s2(m),

r2(am) = p1(a)m+ γ(a)r2(m) + γ(a)m0q2(m),

s2(am) = n0γ(a)p2(m),

q2(am) = s1(a)m+ n0γ(a)r2(m).

Substitute a = 1, we get m0s2(m) = 0, p1(1)m + m0q2(m) = 0, s2(m) =
n0p2(m) and q2(m) = s1(1)m+ n0r2(m). In a similar way, on assuming G1 =[

0 m
0 0

]
and G2 =

[
0 0
0 b

]
, we obtain that p2(mb) = µ(m)s4(b), r2(mb) =

r2(m)b + µ(m)q4(b), s2(mb) = 0 and q2(mb) = q2(m)b. If b = 1, then we get
p2(m) = −µ(m)n′0, where s4(1) = −n′0, µ(m)q4(1) = 0 and s2(m) = 0.
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Now let us take G1 =

[
0 0
n 0

]
and G2 =

[
a 0
0 0

]
, we have

Φd

([
0 0
na 0

])
= Φd

([
0 0
n 0

])[
a 0
0 0

]
+ σ

([
0 0
n 0

])
Φd

([
a 0
0 0

])
[
p3(na) r3(na)
s3(na) q3(na)

]
=

[
p3(n) r3(n)
s3(n) q3(n)

] [
a 0
0 0

]
+

[
0 0

ν(n) 0

] [
p1(a) r1(a)
s1(a) q1(a)

]
=

[
p3(n)a 0
s3(n)a 0

]
+

[
0 0

ν(n)p1(a) ν(n)r1(a)

]
.

On equating both sides, p3(na) = p3(n)a, r3(na) = 0, s3(na) = s3(n)a +
ν(n)p1(a) and q3(na) = ν(n)r1(a). Substitute a = 1, we get r3(n) = 0,
ν(n)p1(1) = 0 and q3(n) = ν(n)m′0, where r1(1) = m′0. Similarly, on tak-

ing G1 =

[
0 0
0 b

]
and G2 =

[
0 0
n 0

]
, we have

p3(bn) = r4(b)n−m0δ(b)s3(n),

r3(bn) = −m0δ(b)q3(n),

s3(bn) = q4(b)n− δ(b)n0p3(n) + δ(b)s3(n),

q3(bn) = −δ(b)n0r3(n) + δ(b)q3(n).

Substitute b = 1, we get p3(n) = r4(1)n−m0s3(n), r3(n) = −m0q3(n), q4(1)n =
n0p3(n) and −n0r3(n) = 0.

Suppose that G1 =

[
a1 0
0 0

]
and G2 =

[
a2 0
0 0

]
, we obtain that

Φd

([
a1a2 0

0 0

])
= Φd

([
a1 0
0 0

])[
a2 0
0 0

]
+ σ

([
a1 0
0 0

])
Φd

([
a2 0
0 0

])
[
p1(a1a2) r1(a1a2)
s1(a1a2) q1(a1a2)

]
=

[
p1(a1) r1(a1)
s1(a1) q1(a1)

] [
a2 0
0 0

]
+

[
γ(a1) γ(a1)m0

n0γ(a1) 0

] [
p1(a2) r1(a2)
s1(a2) q1(a2)

]
=

[
p1(a1)a2 + γ(a1)p1(a2) + γ(a1)m0s1(a2) γ(a1)r1(a2) + γ(a1)m0q1(a2)

s1(a1)a2 + n0γ(a1)p1(a2) n0γ(a1)r1(a2)

]
.
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On comparing both sides, we get

p1(a1a2) = p1(a1)a2 + γ(a1)p1(a2) + γ(a1)m0s1(a2),

r1(a1a2) = γ(a1)r1(a2) + γ(a1)m0q1(a2),

s1(a1a2) = s1(a1)a2 + n0γ(a1)p1(a2),

q1(a1a2) = n0γ(a1)r1(a2).

Put a1 = 1, a2 = a, we get m0s1(a) = p1(1)a,m0q1(a) = 0, s1(a) = s1(1)a +
n0p1(a) and q1(a) = n0r1(a). Again, put a1 = a, a2 = 1, we have γ(a)p1(1) +
γ(a)m0s1(1) = 0, r1(a) = γ(a)r1(1) + γ(a)m0q1(1), n0γ(a)p1(1) = 0 and

q1(a) = n0γ(a)r1(1). Similarly, suppose that G1 =

[
0 0
0 b1

]
and G2 =[

0 0
0 b2

]
, we get

p4(b1b2) = −m0δ(b1)s4(b2),

r4(b1b2) = r4(b1)b2 −m0δ(b1)q4(b2),

s4(b1b2) = −δ(b1)n0p4(b2) + δ(b1)s4(b2),

q4(b1b2) = q4(b1)b2 − δ(b1)n0r4(b2) + δ(b1)q4(b2).

Put b1 = 1, b2 = b, it follows that p4(b) = −m0s4(b), r4(b) = r4(1)b −
m0q4(b),−n0p4(b) = 0 and q4(1)b = n0r4(b). Also, if b1 = b, b2 = 1, then
p4(b) = −m0δ(b)s4(1),−m0δ(b)q4(1) = 0, s4(b) = −δ(b)n0p4(1) + δ(b)s4(1)
and −δ(b)n0r4(1) + δ(b)q4(1) = 0.

Now if G1 =

[
0 m
0 0

]
and G2 =

[
0 0
n 0

]
, then we have

Φd

([
mn 0
0 0

])
= Φd

([
0 m
0 0

])[
0 0
n 0

]
+ σ

([
0 m
0 0

])
Φd

([
0 0
n 0

])
[
p1(mn) r1(mn)
s1(mn) q1(mn)

]
=

[
p2(m) r2(m)
s2(m) q2(m)

] [
0 0
n 0

]
+

[
0 µ(m)
0 0

] [
p3(n) r3(n)
s3(n) q3(n)

]
=

[
r2(m)n 0
q2(m)n 0

]
+

[
µ(m)s3(n) µ(m)q3(n)

0 0

]
.

This leads to p1(mn) = r2(m)n+ µ(m)s3(n), r1(mn) = µ(m)q3(n), s1(mn) =

q2(m)n, q1(mn) = 0. Follow similarly G1 =

[
0 0
n 0

]
and G2 =

[
0 m
0 0

]
,
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we arrive at p4(nm) = 0, r4(nm) = p3(n)m, s4(nm) = ν(n)p2(m), q4(nm) =
s3(n)m+ ν(n)r2(m).

Again, suppose that G1 =

[
a 0
0 0

]
and G2 =

[
0 0
0 b

]

Φd

([
0 0
0 0

])
= Φd

([
a 0
0 0

])[
0 0
0 b

]
+ σ

([
a 0
0 0

])
Φd

([
0 0
0 b

])
[

0 0
0 0

]
=

[
p1(a) r1(a)
s1(a) q1(a)

] [
0 0
0 b

]
+

[
γ(a) γ(a)m0

n0γ(a) 0

] [
p4(b) r4(b)
s4(b) q4(b)

]
=

[
0 r1(a)b
0 q1(a)b

]
+

[
γ(a)p4(b) + γ(a)m0s4(b) γ(a)r4(b) + γ(a)m0q4(b)

n0γ(a)p4(b) n0γ(a)r4(b)

]
.

On comparing both sides we get

γ(a)p4(b) + γ(a)m0s4(b) = 0,

γ(a)r4(b) + r1(a)b = 0,

n0γ(a)p4(b) = 0,

q1(a)b+ n0γ(a)r4(b) = 0.

Using a = 1, we get p4(b) + m0s4(b) = 0, r4(b) + r1(1)b = 0, n0p4(b) = 0 and
q1(1)b+n0r4(b) = 0. Also, substitute b = 1, we get γ(a)p4(1)+γ(a)m0s4(1) =
0, γ(a)r4(1)+r1(a) = 0, n0γ(a)p4(1) = 0 and q1(a)+n0γ(a)r4(1) = 0. Further,
on taking a = 1 & b = 1, r1(1) = −r4(1) = −m′0.

On following similar steps with G1 =

[
0 0
0 b

]
and G2 =

[
a 0
0 0

]
, we

get
p4(b)a−m0δ(b)s1(a) = 0,

−m0δ(b)q1(a) = 0,

s4(b)a− δ(b)n0p1(a) + δ(b)s1(a) = 0,

−δ(b)n0r1(a) + δ(b)q1(a) = 0.

Substitute b = 1, we get p4(1)−m0s1(a) = 0,−m0q1(a) = 0, s4(1)a+s1(a) = 0
and n0r1(a) + q1(a) = 0. Again when a = 1, we have p4(b) −m0δ(b)s1(1) =
0,−m0δ(b)q1(1) = 0, s4(b) + δ(b)s1(1) = 0 and −δ(b)n0r1(1) + δ(b)q1(1) = 0.
Also for a = 1 & b = 1, s4(1) = −s1(1) = −n′0.

If Φd has form (♠) and satisfies condition (1) to (5), the assertion that Φd
is a σ-derivation on G will follow from direct computations.
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Proposition 2.2. Let G = G(A,M,N,B) be a generalized matrix algebra over
a commutative ring R with A and B have only trivial idempotents. An additive
map Φ : G→ G is an anti-σ-derivation on G if and only if Φad has the following
form

Φad

([
a m
n b

])
=

[
p1(a) + p2(m)−m0δ(b)n

′
0 γ(a)m′0 + r2(m) + r3(n) +m′0b

n′0a+ s2(m) + s3(n)− δ(b)n′0 n0γ(a)m′0 + q3(n) + q4(b)

]
,

(?)

where a ∈ A; b ∈ B;m,m0,m0
′ ∈ M;n, n0, n0

′ ∈ N and p1 : A→ A, r2 : M→
M, s3 : N → N, q4 : B→ B, p3 : N → A, r4 : B→ M, s1 : A→ N, q2 : M→ B

are R-linear maps satisfying the following conditions:

1. [γ(a1), γ(a2)]m′0 = 0, [δ(b1), δ(b2)]n′0 = 0 and ν(n)m′0 = 0, µ(m)n′0 = 0,

2. s2(am) = s2(m)a, s2(mb) = δ(b)s2(m), µ(m2)s2(m1) = 0 and s2(m2)m1 =
0,

3. r3(na) = γ(a)r3(n), r3(bn) = r3(n)b, r3(n2)n1 = 0 and ν(n2)r3(n1) = 0,

4. r2(m) = p4(1)m = µ(m)q1(1) and s3(n) = ν(n)p4(1) = q1(1)n,

5. p2(m) = −m0s2(m), and q3(n) = n0r3(n).

Proof. Assume that anti σ-derivation has the following form

Φad

[
a m
n b

]
=

[
p1(a) + p2(m) + p3(n) + p4(b) r1(a) + r2(m) + r3(n) + r4(b)
s1(a) + s2(m) + s3(n) + s4(b) q1(a) + q2(m) + q3(n) + q4(b)

]
,

where p1 : A → A, p2 : M → A, p3 : N → A, p4 : B → A; r1 : A → M, r2 :
M → M, r3 : N → M, r4 : B → M; s1 : A → N, s2 : M → N, s3 : N →
N, s4 : B → N and q1 : A → B,q2 : M → B, q3 : N → B, q4 : B → B are R-
linear maps. As Φad is the anti-σ-derivation with automorphism σ defined by
Φad(G1G2) = Φad(G2)G1 + σ(G2)Φad(G1) for all G1, G2 ∈ G. Now we assume
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that G1 =

[
a 0
0 0

]
and G2 =

[
0 m
0 0

]
and applying Lemma 2.1

Φad

([
0 am
0 0

])
= Φad

([
0 m
0 0

])[
a 0
0 0

]
+ σ

([
0 m
0 0

])
Φad

([
a 0
0 0

])
[
p2(am) r2(am)
s2(am) q2(am)

]
=

[
p2(m) r2(m)
s2(m) q2(m)

] [
a 0
0 0

]
+

[
0 µ(m)
0 0

] [
p1(a) r1(a)
s1(a) q1(a)

]
=

[
p2(m)a 0
s2(m)a 0

]
+

[
µ(m)s1(a) µ(m)q1(a)

0 0

]
.

On comparing both sides we get p2(am) = p2(m)a + µ(m)s1(a), r2(am) =
µ(m)q1(a), s2(am) = s2(m)a and q2(am) = 0. On putting a = 1, we get
µ(m)n′0 = 0, where n′0 = s1(1) andr2(m) = µ(m)q1(1), q2(m) = 0. In a similar

way on assuming G1 =

[
0 m
0 0

]
and G2 =

[
0 0
0 b

]
, we obtain that

p2(mb) = −m0δ(b)s2(m),

r2(mb) = −m0δ(b)q2(m) + p4(b)m,

s2(mb) = −δ(b)n0p2(m) + δ(b)s2(m),

q2(mb) = s4(b)m− δ(b)n0r2(m) + δ(b)q2(m).

On substituting b = 1, we get p2(m) = −m0s2(m), r2(m) = p4(1)m, 0 =
−n0p2(m) and 0 = s4(1)m− n0r2(m). This implies that s2(mb) = δ(b)s2(m)
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Now let us take G1 =

[
0 0
n 0

]
and G1 =

[
a 0
0 0

]
, we have

Φad

([
0 0
na 0

])
= Φad

([
a 0
0 0

])[
0 0
n 0

]
+ σ

([
a 0
0 0

])
Φad

([
0 0
n 0

])
[
p3(na) r3(na)
s3(na) q3(na)

]
=

[
p1(a) r1(a)
s1(a) q1(a)

] [
0 0
n 0

]
+

[
γ(a) γ(a)m0

n0γ(a) 0

] [
p3(n) r3(n)
s3(n) q3(n)

]
=

[
r1(a)n 0
q1(a)n 0

]
+

[
γ(a)p3(n) + γ(a)m0s3(n) γ(a)r3(n) + γ(a)m0q3(n)

n0γ(a)p3(n) n0γ(a)r3(n)

]
.

On equating both sides,

p3(na) = r1(a)n+ γ(a)p3(n) + γ(a)m0s3(n),

r3(na) = γ(a)r3(n) + γ(a)m0q3(n),

s3(na) = q1(a)n+ n0γ(a)p3(n),

q3(na) = n0γ(a)r3(n).

Substitute a = 1, we get 0 = r1(1)n+m0s3(n), 0 = m0q3(n), s3(n) = q1(1)n+
n0p3(n) and q3(n) = n0r3(n). This leads to r3(na) = γ(a)r3(n). Similarly, on

taking G1 =

[
0 0
0 b

]
and G2 =

[
0 0
n 0

]
, we have p3(bn) = 0, r3(bn) =

r3(n)b, s3(bn) = ν(n)p4(b), and q3(bn) = q3(n)b+ ν(n)r4(b). Put b = 1, we get
p3(n) = 0, s3(n) = ν(n)p4(1) and 0 = ν(n)r4(1).
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Suppose that G1 =

[
a1 0
0 0

]
and G2 =

[
a2 0
0 0

]
, we obtain that

Φad

([
a1a2 0

0 0

])
= Φad

([
a2 0
0 0

])[
a1 0
0 0

]
+ σ

([
a2 0
0 0

])
Φad

([
a1 0
0 0

])
[
p1(a1a2) r1(a1a2)
s1(a1a2) q1(a1a2)

]
=

[
p1(a2) r1(a2)
s1(a2) q1(a2)

] [
a1 0
0 0

]
+

[
γ(a2) γ(a2)m0

n0γ(a2) 0

] [
p1(a1) r1(a1)
s1(a1) q1(a1)

]
On comparing both sides, we get

p1(a1a2) = p1(a2)a1 + γ(a2)p1(a1) + γ(a2)m0s1(a1),

r1(a1a2) = γ(a2)r1(a1) + γ(a2)m0q1(a1),

s1(a1a2) = s1(a2)a1 + n0γ(a2)p1(a1),

q1(a1a2) = n0γ(a2)r1(a1).

Put a2 = 1, a1 = a, we get m0s1(a) = p1(1)a,m0q1(a) = 0, s1(a) = s1(1)a +
n0p1(a) and q1(a) = n0r1(a). Again put a2 = a, a1 = 1, we have γ(a)p1(1) +
γ(a)m0s1(1) = 0, r1(a) = γ(a)r1(1) + γ(a)m0q1(1), n0γ(a)p1(1) = 0 and
q1(a) = n0γ(a)r1(1). This leads to r1(a1a2) = γ(a2)r1(a1) and from here
we can conclude that [γ(a1), γ(a2)]m′0 = 0. Similarly,suppose that G1 =[

0 0
0 b1

]
and G1 =

[
0 0
0 b2

]
, we get

p4(b1b2) = −m0δ(b2)s4(b1),

r4(b1b2) = r4(b2)b1 −m0δ(b2)q4(b1),

s4(b1b2) = −δ(b2)n0p4(b1) + δ(b2)s4(b1),

q4(b1b2) = q4(b2)b1 − δ(b2)n0r4(b1) + δ(b2)q4(b1).

Substitute b2 = 1, b1 = b, it follows that p4(b) = −m0s4(b), r4(b) = r4(1)b −
m0q4(b),−n0p4(b) = 0 and q4(1)b = n0r4(b). Also, if b2 = b, b1 = 1, then
p4(b) = −m0δ(b)s4(1),−m0δ(b)q4(1) = 0, s4(b) = −δ(b)n0p4(1) + δ(b)s4(1)
and −δ(b)n0r4(1) + δ(b)q4(1) = 0. This implies that s4(b1b2) = δ(b2)s4(b1)
and hence m′0[δ(b1), δ(b2)] = 0.
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Now if G1 =

[
0 m
0 0

]
and G2 =

[
0 0
n 0

]
, then we have

Φad

([
mn 0
0 0

])
= Φad

([
0 0
n 0

])[
0 m
0 0

]
+ σ

([
0 0
n 0

])
Φad

([
0 m
0 0

])
[
p1(mn) r1(mn)
s1(mn) q1(mn)

]
=

[
p3(n) r3(n)
s3(n) q3(n)

] [
0 m
0 0

]
+

[
0 0

ν(n) 0

] [
p2(m) r2(m)
s2(m) q2(m)

]
=

[
0 p3(n)m
0 s3(n)m

]
+

[
0 0

ν(n)p2(m) ν(n)r2(m)

]
This leads to p1(mn) = 0, r1(mn) = p3(n)m, s1(mn) = ν(n)p2(m), q1(mn) =

s3(n)m + ν(n)r2(m). Follow similarly G1 =

[
0 0
n 0

]
and G2 =

[
0 m
0 0

]
,

we arrive at p4(nm) = r2(m)n+ µ(m)s3(n),
r4(nm) = µ(m)q3(n),s4(nm) = q2(m)n and q4(nm) = 0.

Again, suppose that G1 =

[
a 0
0 0

]
and G2 =

[
0 0
0 b

]

Φad

([
0 0
0 0

])
= Φad

([
0 0
0 b

])[
a 0
0 0

]
+ σ

([
0 0
0 b

])
Φad

([
a 0
0 0

])
[

0 0
0 0

]
=

[
p4(b) r4(b)
s4(b) q4(b)

] [
a 0
0 0

]
+

[
0 −m0δ(b)

−δ(b)n0 δ(b)

] [
p1(a) r1(a)
s1(a) q1(a)

]
=

[
p4(b)a 0
s4(b)a 0

]
+

[
−m0δ(b)s1(a) −m0δ(b)q1(a)

−δ(b)n0p1(a) + δ(b)s1(a) −δ(b)n0r1(a) + δ(b)q1(a)

]
On comparing both sides we get p4(b)a − m0δ(b)s1(a) = 0,−m0δ(b)q1(a) =
0, s4(b)a − δ(b)n0p1(a) + δ(b)s1(a) = 0 and −δ(b)n0r1(a) + δ(b)q1(a) = 0.
Substitute b = 1, we get p4(1)−m0s1(a) = 0,−m0q1(a) = 0, s4(1)a+s1(a) = 0
and n0r1(a) + q1(a) = 0. Again when a = 1, we have p4(b) −m0δ(b)s1(1) =
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0,−m0δ(b)q1(1) = 0, s4(b) + δ(b)s1(1) = 0 and −δ(b)n0r1(1) + δ(b)q1(1) = 0.
Also for a = 1 & b = 1, s4(1) = −s1(1) = −n′0.

On following similar steps with G1 =

[
0 0
0 b

]
and G2 =

[
a 0
0 0

]
, we

get γ(a)p4(b) + γ(a)m0s4(b) = 0, γ(a)r4(b) + r1(a)b = 0, n0γ(a)p4(b) = 0 and
q1(a)b + n0γ(a)r4(b) = 0. Using a = 1, we get p4(b) + m0s4(b) = 0, r4(b) +
r1(1)b = 0, n0p4(b) = 0 and q1(1)b + n0r4(b) = 0. Also, substitute b = 1, we
get γ(a)p4(1) + γ(a)m0s4(1) = 0, γ(a)r4(1) + r1(a) = 0, n0γ(a)p4(1) = 0 and
q1(a) + n0γ(a)r4(1) = 0. Further, on taking a = 1 & b = 1, r1(1) = −r4(1) =
−m′0.

Now, suppose that G1 =

[
0 m1

0 0

]
and G2 =

[
0 m2

0 0

]

Φad

([
0 0
0 0

])
= Φad

([
0 m2

0 0

])[
0 m1

0 0

]
+ σ

([
0 m2

0 0

])
Φad

([
0 m1

0 0

])
[

0 0
0 0

]
=

[
p2(m2) r2(m2)
s2(m2) q2(m2)

] [
0 m1

0 0

]
+

[
0 µ(m2)
0 0

] [
p2(m1) r2(m1)
s2(m1) q2(m1)

]
=

[
0 p2(m2)m1

0 s2(m2)m1

]
+

[
µ(m2)s2(m1) µ(m2)q2(m1)

0 0

]
On comparing both sides we get p2(m2)m1+µ(m2)q2(m1) = 0, µ(m2)s2(m1) =

0, s2(m2)m1 = 0. On following similar steps with G1 =

[
0 0
n1 0

]
and G2 =[

0 0
n2 0

]
, we get r3(n2)n1 = 0, s3(n2)n1 +ν(n2)p3(n1) = 0, ν(n2)r3(n1) = 0.

If Φad has form (?) and satisfies condition (1) to (5), the assertion that
Φad is a anti σ-derivation on G will follow from direct computations.

Now we are ready to prove our main results:

Theorem 2.3. Let G = G(A,M,N,B) be a 2-torsion free generalized matrix
algebra over a commutative ring R with A and B have only trivial idempotents.
An additive map ΦJ : G→ G is a Jordan σ-derivation on G if and only if ΦJ
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has the following form

ΦJ

([
a m
n b

])
=

[
p1(a) + p2(m) + p3(n)−m0δ(b)n

′
0 γ(a)m′0 + r2(m) + r3(n) + r4(b)

s1(a) + s2(m) + s3(n)− δ(b)n′0 n0γ(a)m′0 + q2(m) + q3(n) + q4(b)

]
,

(♣)

where a ∈ A; b ∈ B;m,m0,m0
′ ∈ M;n, n0, n0

′ ∈ N and p1 : A→ A, r2 : M→
M, s3 : N → N, q4 : B→ B, p3 : N → A, r4 : B→ M, s1 : A→ N, q2 : M→ B

are R-linear maps satisfying the following conditions:

1. p1(a2) = p1(a)a + γ(a)p1(a) + γ(a)m0s1(a) and p1(mn) = −p4(nm) +
r2(m)n+ µ(m)s3(n);

2. q4(b2) = q4(b)b − δ(b)n0r4(b) + δ(b)q4(b) and q4(nm) = −q1(mn) +
s3(n)m+ ν(n)r2(m);

3. r2(am) = p1(a)m+ γ(a)r2(m) + γ(a)m0q2(m) + µ(m)q1(a),
r2(mb) = p4(b)m+ r2(m)b−m0δ(b)q2(m) + µ(m)q4(b);

4. s3(na) = s3(n)a+ q1(a)n+ n0γ(a)p3(n) + ν(n)p1(a),
s3(bn) = q4(b)n− δ(b)n0p3(n) + ν(n)p4(b) + δ(b)s3(n);

5. r3(bn) = r3(n)b−m0δ(b)q3(n), r3(na) = γ(a)r3(n), r3(n)n = 0, ν(n)r3(n) =
0;

6. s2(mb) = δ(b)s2(m), s2(am) = s2(m)a + n0γ(a)p2(m), µ(m)s2(m) =
0, s2(m)m = 0;

7. p2(m) = −m0s2(m)− µ(m)n′0 and q3(n) = n0r3(n) + ν(n)m′0;

8. q2(m) = n′0m+ n0r2(m) and p3(n) = m′0n−m0s3(n);

9. s1(a) = −n′0a − n0γ(a)p4(1) + n0p1(a) and r4(b) = −m′0b −m0q4(b) +
m0δ(b)q1(1).

Proof. Suppose that Jordan σ-derivation has the following form as

ΦJ

[
a m
n b

]
=

[
p1(a) + p2(m) + p3(n) + p4(b) r1(a) + r2(m) + r3(n) + r4(b)
s1(a) + s2(m) + s3(n) + s4(b) q1(a) + q2(m) + q3(n) + q4(b)

]
,

where p1 : A → A, p2 : M → A, p3 : N → A, p4 : B → A; r1 : A → M, r2 :
M → M, r3 : N → M, r4 : B → M; s1 : A → N, s2 : M → N, s3 : N →
N, s4 : B → N and q1 : A → B,q2 : M → B, q3 : N → B, q4 : B → B

are R-linear maps. As ΦJ is the Jordan σ-derivation with automorphism σ
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defined by ΦJ(G2) = ΦJ(G)G + σ(G)ΦJ(G) for all G ∈ G. Now we assume

that G =

[
a 0
0 0

]
and applying Lemma 2.1

ΦJ

([
a2 0
0 0

])
= ΦJ

([
a 0
0 0

])[
a 0
0 0

]
+ σ

([
a 0
0 0

])
ΦJ

([
a 0
0 0

])
[
p1(a2) r1(a2)
s1(a2) q1(a2)

]
=

[
p1(a) r1(a)
s1(a) q1(a)

] [
a 0
0 0

]
+

[
γ(a) γ(a)m0

n0γ(a) 0

] [
p1(a) r1(a)
s1(a) q1(a)

]
=

[
p1(a)a 0
s1(a)a 0

]
+

[
γ(a)p1(a) + γ(a)m0s1(a) γ(a)r1(a) + γ(a)m0q1(a)

n0γ(a)p1(a) n0γ(a)r1(a)

]
.

On comparing both sides we get p1(a2) = p1(a)a+ γ(a)p1(a) + γ(a)m0s1(a) ,
r1(a2) = γ(a)r1(a)+γ(a)m0q1(a), s1(a2) = s1(a)a+n0γ(a)p1(a) and q1(a2) =
n0γ(a)r1(a).

Similarly, for G =

[
0 0
0 b

]
, we have p4(b2) = −m0δ(b)s4(b), r4(b2) =

r4(b)b−m0δ(b)q4(b), s4(b2) = −δ(b)n0p4(b) + δ(b)s4(b) and q4(b2) = q4(b)b−
δ(b)n0r4(b) + δ(b)q4(b).

Let us suppose G =

[
0 m
0 0

]
, we get

ΦJ

([
0 0
0 0

])
= ΦJ

([
0 m
0 0

])[
0 m
0 0

]
+ σ

([
0 m
0 0

])
ΦJ

([
0 m
0 0

])
[

0 0
0 0

]
=

[
p2(m) r2(m)
s2(m) q2(m)

] [
0 m
0 0

]
+

[
0 µ(m)
0 0

] [
p2(m) r2(m)
s2(m) q2(m)

]
=

[
0 p2(m)m
0 s2(m)m

]
+

[
µ(m)s2(m) µ(m)q2(m)

0 0

]
This leads to 0 = µ(m)s2(m), 0 = p2(m)m + µ(m)q2(m) and 0 = s2(m)m.

Similarly, choosing G =

[
0 0
n 0

]
, we get 0 = r3(n)n, 0 = q3(n)n+ ν(n)p3(n)



σ-DERIVATIONS ON GENERALIZED MATRIX ALGEBRAS 131

and 0 = ν(n)r3(n). Now choosing G =

[
a m
0 0

]
, we get

p2(am) = p2(m)a+ γ(a)p2(m) + γ(a)m0s2(m) + µ(m)s1(a),

r2(am) = p1(a)m+ γ(a)r2(m) + γ(a)m0q2(m) + µ(m)q1(a),

s2(am) = s2(m)a+ n0γ(a)p2(m),

q2(am) = s1(a)m+ n0γ(a)r2(m).

Substitute a = 1, we find that p2(m) = −m0s2(m)−µ(m)s1(1), 0 = p1(1)m+
m0q2(m) + µ(m)q1(1), 0 = n0p2(m) and q2(m) = s1(1)m + n0r2(m). Also, if

G =

[
0 m
0 b

]
, then we get

p2(mb) = −m0δ(b)s2(m) + µ(m)s4(b),

r2(mb) = p4(b)m+ r2(m)b−m0δ(b)q2(m) + µ(m)q4(b),

s2(mb) = −δ(b)n0p2(m) + δ(b)s2(m),

q2(mb) = s4(b)m+ q2(m)b− δ(b)n0r2(m) + δ(b)q2(m).

On putting b = 1, we find that p2(m) = −m0s2(m)+µ(m)s4(1), 0 = p4(1)m−
m0q2(m) + µ(m)q4(1), 0 = n0p2(m) and q2(m) = −s4(1)m + n0r2(m). Simi-

larly, on assuming G =

[
a 0
n 0

]
, we get

p3(na) = p3(n)a+ r1(a)n+ γ(a)p3(n) + γ(a)m0s3(n),

r3(na) = γ(a)r3(n) + γ(a)m0q3(n),

s3(na) = s3(n)a+ q1(a)n+ n0γ(a)p3(n) + ν(n)p1(a),

q3(na) = n0γ(a)r3(n) + ν(n)r1(a).

Substitute a = 1, we find that p3(n) = −r1(1)n −m0s3(n), 0 = m0q3(n), 0 =

q1(1)n+n0p3(n)+ν(n)p1(1) and q3(n) = n0r3(n)+ν(n)r1(1). IfG =

[
0 0
n b

]
,

the we have

p3(bn) = r4(b)n−m0δ(b)s3(n),

r3(bn) = r3(n)b−m0δ(b)q3(n),

s3(bn) = q4(b)n− δ(b)n0p3(n) + ν(n)p4(b) + δ(b)s3(n),

q3(bn) = q3(n)b− δ(b)n0r3(n) + ν(n)r4(b) + δ(b)q3(n).

If b = 1, then p3(n) = r4(1)n−m0s3(n), 0 = −m0q3(n), 0 = q4(1)n−n0p3(n)+
ν(n)p4(1) and q3(n) = n0r3(n)− ν(n)r4(1). Further we conclude that s4(b) =
−δ(b)n′0 and r1(a) = γ(a)m′0
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Consider G =

[
a 0
0 b

]
, we get

0 = p4(b)a+ γ(a)p4(b) + γ(a)m0s4(b)−m0δ(b)s1(a),

0 = r1(a)b+ γ(a)r4(b) + γ(a)m0q4(b)−m0δ(b)q1(a),

0 = s4(b)a+ n0γ(a)p4(b)− δ(b)n0p1(a) + δ(b)s1(a),

0 = q1(a)b+ n0γ(a)r4(b)− δ(b)n0r1(a) + δ(b)q1(a).

On putting b = 1, we find that

0 = p4(1)a+ γ(a)p4(1) + γ(a)m0s4(1)−m0s1(a),

0 = r1(a) + γ(a)r4(1) + γ(a)m0q4(1)−m0q1(a),

0 = s4(1)a+ n0γ(a)p4(1)− n0p1(a) + s1(a),

0 = q1(a) + n0γ(a)r4(1)− n0r1(a) + q1(a).

Substitute a = 1, we find that

0 = p4(b) + p4(b) +m0s4(b)−m0δ(b)s1(1),

0 = r1(1)b+ r4(b) +m0q4(b)−m0δ(b)q1(1),

0 = s4(b) + n0p4(b)− δ(b)n0p1(1) + δ(b)s1(1),

0 = q1(1)b+ n0r4(b)− δ(b)n0r1(1) + δ(b)q1(1).

This implies that 2q1(a) = −2n0γ(a)m′0 and 2p4(b) = 2m0δ(b)n
′
0. Now choos-

ing G =

[
0 m
n 0

]
, we get

ΦJ

([
mn 0
0 nm

])
= ΦJ

([
0 m
n 0

])[
0 m
n 0

]
+ σ

([
0 m
n 0

])
ΦJ

([
0 m
n 0

])
[
p1(mn) + p4(nm) r1(mn) + r4(nm)
s1(mn) + s4(nm) q1(mn) + q4(nm)

]
=

[
p2(m) + p3(n) r2(m) + r3(n)
s2(m) + s3(n) q2(m) + q3(n)

] [
0 m
n 0

]
+

[
0 µ(m)

ν(n) 0

] [
p2(m) + p3(n) r2(m) + r3(n)
s2(m) + s3(n) q2(m) + q3(n)

]
.

This leads to p1(mn) + p4(nm) = r2(m)n + µ(m)s3(n), r1(mn) + r4(nm) =
p3(n)m+ µ(m)q3(n), s1(mn) + s4(nm) = q2(m)n+ ν(n)p2(m) and q1(mn) +
q4(nm) = s3(n)m+ ν(n)r2(m).

Converse is trivial.
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Theorem 2.4. Let G = G(A,M,N,B) be a 2-torsion free generalized matrix
algebra over a commutative ring R with A and B have only trivial idempotents.
If bilinear pairings ξMN = 0 = ΩNM, then every Jordan σ-derivation can be
written as the sum of a σ-derivation and anti-σ-derivation.

Proof. From the Theorem 2.3, we have

ΦJ

([
a m
n b

])
=

[
p1(a) + p2(m) + p3(n) +m0δ(b)n

′
0 γ(a)m′

0 + r2(m) + r3(n) + r4(b)
s1(a) + s2(m) + s3(n) − δ(b)n′

0 −n0γ(a)m′
0 + q2(m) + q3(n) + q4(b)

]
=

[
p1(a) + p2(m) + p3(n) +m0δ(b)n

′
0 γ(a)m′

0 + r2(m) + r4(b)
s1(a) + s3(n) − δ(b)n′

0 −n0γ(a)m′
0 + q2(m) + q3(n) + q4(b)

]
+

[
0 r3(n)

s2(m) 0

]
= Φd

([
a m
n b

])
+ Φad

([
a m
n b

])
.

This shows that Jordan σ-derivation can be expressed the sum of a derivation
σ-derivation Φd and an anti σ-derivation Φad, which is the desired result.

Corollary 2.5. Let Tn(R)(n ≥ 2) be the upper (or lower) triangular matrix
algebra over 2-torsion free commutative ring R with identity. Then every
Jordan σ-derivation on Tn(R)(n ≥ 2) is a σ-derivation.

Proof. It can be easily seen that Tn(R)(n ≥ 2) is a generalized matrix al-
gebra in which bilinear pairings are zero. From Theorem 2.4, every Jordan
σ-derivation on Tn(R)(n ≥ 2) can be written as the sum of a σ- derivation
and an anti-σ-derivation. In view of [11, Corollary 2.5] we conclude that the
part of anti σ-derivation is zero. This leads to the fact that every Jordan
σ-derivation on Tn(R)(n ≥ 2) is a σ-derivation.

3 Topics for future research

The main aim of this paper is to concentrate on studying σ-derivations on
generalized matrix algebras. The current work together with [8, 16] indicate
that it is feasible to investigate Lie σ-derivations on generalized matrix algebras
by moderate adaption of current methods. We have good reasons to believe
that characterizing Lie σ-derivations on generalized matrix algebras is also of
great interest. In the light of the motivation and contents of this article, we
would like to end this article by proposing several potential questions.
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Let A be a unital algebra over a commutative ring R, σ be the automor-
phisms on A. A map L : A→ A is called a Lie σ-derivation if

L([x, y]) = L(x)y + σ(x)L(y)− L(y)x− σ(y)L(x)

for all x, y ∈ A. Obviously, if σ = I, then Lie σ-derivation is called Lie deriva-
tion.

Recently, many authors studied Lie derivation on various kind of alge-
bras [6, 7, 10]. The first characterization of Lie derivations was obtained by
Martindale [12] in 1964 who proved that every Lie derivation on primitive
ring can be written as a sum of derivation and an additive mapping of ring to
its center that maps commutators into zero, i.e, Lie derivation has the stan-
dard form. Cheung [3] established the structures of commuting maps and Lie
derivation on triangular algebras. Further, Yang and Zhu [16] characterized
the additive σ-derivation on triangular algebras. Li and Wei [8] studied the
structure of Lie derivations on generalized matrix algebras and prove that it
has standard form. Now here it is natural to raise a question:

Question 3.1. Let L be Lie σ-derivation on generalized matrix algebra G.

How can we describe its general form? That is L

[
a m
n b

]
=

[
? ?
? ?

]
for

every

[
a m
n b

]
∈ G.
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